GAO BLOG

The CAO Coral Reef Challenge
Gregory P. Asner, September 2017
Coral reefs are global hotspots of biological diversity and support the livelihoods of more than a billion people worldwide. Coral reefs cover roughly 500,000 km2 of the Earth’s surface, but are sparsely distributed over more than 200 million km2 of ocean (Figure 1). Field studies currently represent less than 0.01% of coral reefs worldwide, and although local monitoring is important, it provides little understanding of the trajectory of coral reefs undergoing regional and global environmental change. Read More

KONA, Hawaii — Hawaiian lawmakers are considering a ban on some popular sunscreens to try to protect coral reefs.
Researchers found that oxybenzone, a UV filtering ingredient commonly found in lotions, harms the coral. Up to 14,000 tons of sunscreen wind up in coral reef areas of the ocean every year, and scientists say that contributes to the ecosystem’s damage.
The Big Island of Hawaii’s pristine coastline is home to one of the state’s largest coral reefs, a miles-long stretch that scientists say is dying at an alarming rate.

Collaborating researchers showcased their wide-ranging technology for journalists Monday at the Hilo Air Patrol.
A tree can be infected with either of the two species of Ceratocystis fungi that causes ROD for months before symptoms of the illness — browning leaves — appear, but once symptoms do show up the tree dies within weeks. An estimated 75,000 acres of ohia forest on the Big Island have already been affected. More than 200,000 ohia trees died between 2015 and 2016, with some research estimates placing the number closer to 300,000.

A high-winged twin engine airplane glides over the forest canopy, shooting laser beams into the woodlands. But this aircraft and the lasers beaming from it are not a scene in a science fiction film or even a military training exercise. They are on a mission to find life and death within the trees scattered across the forests of the Sierra Nevada.
In April 2016, the Carnegie Airborne Observatory team mapped forests throughout the Malaysian Borneo state of Sabah. In collaboration with the Sabah Forestry Department and multiple non-government partners, the CAO team used its airborne high-resolution laser scanning to discover 50 trees over the height of 90 meters. These 50 trees exceed the height of the previously reported tallest tropical tree of 89.5 meters. The team’s very tallest tree was discovered at a height of 94.1 meters, exceeding the height of the Statue of Liberty, as widely reported in the news, and is located in Sabah’s Danum Valley.

In August 2011, I climbed onto a small twin-propeller plane, crouching down to avoid smacking my head. The plane took off from Cusco, Peru, and was soon soaring over the Amazon rainforest. From the window, I could see a vast, unbroken layer of trees, greeting the horizon in every direction. It all looked the same—but it wasn’t. That seemingly uniform stretch of jungle contained many distinctive types of forest, each with its own distinctive climate and species. To the naked eye, the boundaries between these zones are invisible. We literally can’t see the forests for the trees.

Since its inception in 2006, CAO has produced interesting data art for numerous scientific journals. Making the December 2016 cover of Ecological Applications, this image shows CAO’s Visible-to-Shortwave Infrared (VSWIR) imaging spectrometer data over a reforested landscape in Panama. Different colors indicate differences in growth rates among tropical trees.

A letter of thanks from CAO Principal Investigator Greg Asner
November 2016 marks the tenth anniversary of the Carnegie Airborne Observatory (CAO) program. In recognition of this milestone, made possible by a special team and our visionary donors, we celebrate discovery, ecological conservation, and environmental action driven by CAO science and technology.

How can you tell if an avocado’s gone bad just by looking at it? By examining it through a hyperspectral (HS) camera. These devices – also known as imaging spectrometers – see things the human eye cannot by scanning the world across multiple channels of light. Where humans see three wavelengths in the colour spectrum (red, green and blue), hyperspectral sensors can detect as many as 480.

A few months ago, it was announced that there was a new record for the world’s tallest tropical tree: a Yellow Meranti (Shorea faguetiana) found in Sabah, one of the two Malaysian states on the island of Borneo, that stands some 89.5 metres (about 294 feet) tall.

From a freezing hotel ballroom in Kota Kinabalu, an exciting announcement was made about the sweltering tropical forests in the Heart of Borneo, in an area on the interior of Southeast Asia that straddles the borders of Malaysia, Indonesia, and Brunei. Using laser-scanning technology known as Light Detection and Ranging (LiDAR), Greg Asner of Stanford University and the Carnegie Institution for Science revealed that his team had identified 50 new trees that break the previous record for the world’s tallest tropical tree announced earlier this year.

Amazon forests conjure visions of lush canopies, not giant branches crashing to the ground. But according to a recent study, published in Environmental Research Letters, dead branches frequently fall from the tops of trees in the Amazon, releasing a startling amount of carbon dioxide into the atmosphere.

Across the state of California, millions of trees are dying each year—but it’s not from old age. The ongoing drought is causing extreme water stress in many forests, which paradoxically leads trees to release pheromones that attract another threat: bark beetles. According to forest ecologist Christina Restaino, water stress also cuts the trees’ ability to produce sap, a first-line defense against beetles.

Limahuli Valley, Kauai
July 2016 marks the 10th anniversary of a scientific idea hatched in a distant valley along Kauai Island’s northern coast in the central Pacific. The 2006 conception was preceded by ten other years of research on the chemical properties of plant canopies in far flung environments ranging from desert shrublands to tropical rainforests. That preceding decade had cumulatively yielded just a hint that a tree-of-life approach to studying forests might be possible at the mother of all scales – Earth’s biosphere.

Patient zero was probably in Puna, a lush, wild district not far from Volcanoes National Park on Hawaii’s Big Island. In 2010, the U.S. Forest Service and University of Hawaii started getting calls from distraught landowners in the area about ohia trees on their properties. Ohias, the bright, flowered trees that dominate nearly 50 percent of the island-state’s forests, are known for their ability to thrive nearly anywhere across the archipelago. But a swath of them had withered mysteriously and died in a matter of weeks.

Animal assemblages are often viewed as a product of the ecosystems in which they live, but in reality they are often the reason an ecosystem looks the way it does. The roles of animals in shaping ecosystems are so important that two special issues recently published in PNAS and Ecography focus specifically on megafauna (literately translated as ‘large animal’) and the important roles they play in ecosystems, as well as what we may have lost through their extinctions across much of the globe.
Read More

While much of the country is dealing with rain and snow, California is still dry. One hundred percent of the state is in some form of drought, and a new study just released by the Carnegie Institution for Science has now put a number on what the drought has done to California’s iconic forests. A high-tech flying laboratory has been soaring over California, measuring the impact of four years of drought.
“There’s a lot of red on this screen, which is a sign that we’re over an area that’s in trouble,” scientist Greg Asner told CBS News.

New maps reveal the extreme impact the years-long drought has had on California’s trees and offer a prognosis for future forest health.
Up to 58 million trees have been severely stressed by the drought and related factors, such as rising temperatures and a plague of bark beetle infestations. If the drought persists, hundreds of millions of trees throughout the state could die, according to a study published this week in Proceedings of the National Academy of Sciences.

The past four years of punishing drought have badly hurt California’s forests. Rain was scarce, the days were too hot, and this year’s wildfire season was the worst anyone has seen in years, burning up nearly 10 million acres across the West. For the first time, a team of researchers has measured the severity of the blow the drought dealt the trees, uncovering potential future destruction in the process. The resulting paper, published Monday in the Proceedings of the National Academy of Sciences, is a rich visual testament to just how much California needs its trees and how close the state is to losing 58 million of them.

THE VIEW OUT THE WINDOW WAS BAD ENOUGH. As his research plane flew over groves of California’s giant sequoias, some of the world’s tallest trees, Greg Asner could see the toll the state’s four-year drought had taken. “It looked wicked dry down there,” he said. But when he turned from the window to the video display in his flying lab, the view was even more alarming. In places, the forest was bright red. “It was showing shocking levels of stress,” he said.

The Osa Peninsula of Costa Rica is home to the largest intact lowland tropical forest on the Pacific coastline of the Americas, and is considered a biodiversity mega-hotspot. The forests of the Osa Peninsula contain trees that commonly reach heights of over 50 m, making it one of the highest biomass forests in the Neotropics. The structural complexity and species diversity of the Osa Peninsula has drawn researchers from all over the world, and holds clues to nutrient cycling, evolution and species distribution (to name a few).

California is experiencing one of its worst fire seasons in history. Firefighters have responded to nearly 6,800 fires this year alone, and we’re only half way through the season. The devastating Valley Fire engulfed over 585 homes and 73,7000 acres, according to Cal Fire. Much of this is a result of a historic, multi-year drought and decades of fire suppression, leaving the California forests in a vulnerable state.

The Hawaiian Islands are home to enormous environmental gradients that make for one of the best outdoor scientific research laboratories on Earth. The Island of Hawaii alone, just one of eight main islands, contains much of the forest cover, carbon stocks and biological diversity of the entire Hawaiian Archipelago. Hawaii Island’s 3100 km2 of forests encompass most of the ecological conditions found worldwide. As a result, much of Hawaii Island’s ecosystems have remained a focus for conservation of its unique flora and fauna as well of long-term scientific study.

For more than a century, the Amazon Basin has undergone boom and bust cycles with gold miners, leading to enormous ecological damage still observable in regions like eastern Brazil. In this century, however, hotspots of gold mining have emerged in the western Amazon lowlands, in places such as Peru, which harbors the highest biodiversity forests on Earth.

Illegal miners have invaded an indigenous reserve in the Peruvian Amazon, reveals new analysis of satellite imagery. Gold mining in the region is extensive. Research published by Greg Asner of the Carnegie Institution for Science found that the extent of mining in Peru’s Madre de Dios expanded from less than 10,000 hectares in 1999 to more than 50,000 ha as of September 2012. Rising gold prices combined with increased access to the region fueled the increase.

On May 1 2015, the third generation Carnegie Airborne Observatory (CAO) was unveiled at the Hiller Aviation Museum in San Carlos, California to a crowd of conservation, science, aviation and technology enthusiasts. CAO-3 stands out as one of the most advanced Earth mapping and data-analytics platforms operating in the civil sector today. Here’s the behind-the-scenes story of the CAO.

A huge amount of attention has been paid to the issue of California’s deepening drought. The New York Times has made it a major and continuing focus of their reporting. California Governor Jerry Brown and the mayors of every major city in California have pushed for water restrictions and other urgent measures (http://ca.gov/drought/). Farmers, crops and livestock are suffering. California’s human inhabitants are on borrowed time, living off the dwindling water storage of our reservoirs and aquifers.

Amazon gold mining has hit and re-hit the headlines over the past 24 months, with reports of increasing deforestation and mercury pollution in places like the Peruvian Amazon. Today, CAO was featured in continuing coverage of this important story on National Public Radio (NPR) news across the United States.

Greg Asner discusses how CAO’s technology and scientific approach produce unique maps of the biological composition of Earth’s ecosystems. CAO sensors can map the chemical, structure and biological diversity of forests and other types of vegetation. The maps produced by the CAO have been used to drive new conservation actions in the Amazon basin and other tropical regions.

A new report released by the Environmental Investigation Agency (EIA) used Carnegie Airborne Observatory data to expose a chocolate (cacao) producer linked to the deforestation of primary Amazonian rainforest. United Cacao denied any illegal forest clearing, saying that the forests in question were degraded prior to agricultural expansion; however, the map of carbon density generated by the CAO proved otherwise.

CAO is featured in the December 19 2014 issue of Newsweek, with extensive coverage of CAO’s role in advancing international efforts to reduce greenhouse gases from tropical deforestation. The story focuses on CAO’s laser technology, and the team’s approach to creating high-resolution maps of how much carbon (biomass) is locked up in tropical forests of Peru. This country contains more than 70 million hectares, or 175 million acres, of tropical forests in the lowland Amazon as well as the Andes Mountains.

Without a strategy to maintain the world’s forests, we may as well give up on climate change and accept our fate. Trees are that important. Deforestation contributes about 15% of all greenhouse gases, because a lot of a tree’s mass is carbon. When you cut it down or burn it, you’re effectively releasing CO2 into the atmosphere. We need trees as carbon “sinks”—they’re the best storage devices we have.
Read More

Measuring carbon emissions is crucial for planning a response to climate change. But scientists have so far struggled to keep track of the world’s carbon stocks and how they vary.

This month, the CAO was featured in Wired Magazine in an article about mapping the Amazon basin in 3D. The article covers the development of CAO-2’s Airborne Taxonomic Mapping System or AToMS, and goes on to tell the story of how CAO is mapping remote forests of the western Amazon before they are leveled by agriculture and other forms of development. Wired made the connection between CAO’s unique technology and the need to map tropical forests for conservation and international policy development.